Metabolomic Profiling of Fatty Acid and Amino Acid Metabolism in Youth With Obesity and Type 2 Diabetes

نویسندگان

  • Stephanie J. Mihalik
  • Sara F. Michaliszyn
  • Javier de las Heras
  • Fida Bacha
  • SoJung Lee
  • Donald H. Chace
  • Victor R. DeJesus
  • Jerry Vockley
  • Silva A. Arslanian
چکیده

OBJECTIVE We compared acylcarnitine (AcylCN) species, common amino acid and fat oxidation (FOX) byproducts, and plasma amino acids in normal weight (NW; n = 39), obese (OB; n = 64), and type 2 diabetic (n = 17) adolescents. RESEARCH DESIGN AND METHODS Fasting plasma was analyzed by tandem mass spectrometry, body composition by dual energy X-ray absorptiometry and computed tomography, and total-body lipolysis and substrate oxidation by [(2)H(5)]glycerol and indirect calorimetry, respectively. In vivo insulin sensitivity (IS) was assessed with a 3-h hyperinsulinemic-euglycemic clamp. RESULTS Long-chain AcylCNs (C18:2-CN to C14:0-CN) were similar among the three groups. Medium- to short-chain AcylCNs (except C8 and C10) were significantly lower in type 2 diabetes compared with NW, and when compared with OB, C2-, C6-, and C10-CN were lower. Amino acid concentrations were lower in type 2 diabetes compared with NW. Fasting lipolysis and FOX were higher in OB and type 2 diabetes compared with NW, and the negative association of FOX to C10:1 disappeared after controlling for adiposity, Tanner stage, and sex. IS was lower in OB and type 2 diabetes with positive associations between IS and arginine, histidine, and serine after adjusting for adiposity, Tanner stage, and sex. CONCLUSIONS These metabolomics results, together with the increased rates of in vivo FOX, are not supportive of defective fatty acid or amino acid metabolism in obesity and type 2 diabetes in youth. Such observations are consistent with early adaptive metabolic plasticity in youth, which over time-with continued obesity and aging-may become dysfunctional, as observed in adults.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolomic Profiling of Fatty Acid and Amino AcidMetabolism in YouthWith Obesity and Type 2 Diabetes Evidence for enhanced mitochondrial oxidation

RESULTSdLong-chain AcylCNs (C18:2-CN to C14:0-CN) were similar among the three groups. Mediumto short-chain AcylCNs (except C8 and C10) were significantly lower in type 2 diabetes compared with NW, andwhen comparedwithOB, C2-, C6and C10-CN, were lower. Amino acid concentrations were lower in type 2 diabetes compared with NW. Fasting lipolysis and FOXwere higher in OB and type 2 diabetes compare...

متن کامل

Metabolomic signatures in lipid-loaded HepaRGs reveal pathways involved in steatotic progression

OBJECTIVES A spectrum of disorders including simple steatosis, nonalcoholic steatohepatitis, fibrosis, and cirrhosis is described by nonalcoholic fatty liver disease (NAFLD). With the increased prevalence of obesity, and consequently NAFLD, there is a need for novel therapeutics in this area. To facilitate this effort, a cellular model of hepatic steatosis was developed using HepaRG cells and t...

متن کامل

A Branched-Chain Amino Acid-Related Metabolic Signature Characterizes Obese Adolescents with Non-Alcoholic Fatty Liver Disease

Dysregulation of several metabolite pathways, including branched-chain amino acids (BCAAs), are associated with Non-Alcoholic Fatty Liver Disease (NAFLD) and insulin resistance in adults, while studies in youth reported conflicting results. We explored whether, independently of obesity and insulin resistance, obese adolescents with NAFLD display a metabolomic signature consistent with disturban...

متن کامل

Ataxin-2 (Atxn2)-Knock-Out Mice Show Branched Chain Amino Acids and Fatty Acids Pathway Alterations.

Human Ataxin-2 (ATXN2) gene locus variants have been associated with obesity, diabetes mellitus type 1,and hypertension in genome-wide association studies, whereas mouse studies showed the knock-out of Atxn2 to lead to obesity, insulin resistance, and dyslipidemia. Intriguingly, the deficiency of ATXN2 protein orthologs in yeast and flies rescues the neurodegeneration process triggered by TDP-4...

متن کامل

The metabolome profiling of obese and non-obese individuals: Metabolically healthy obese and unhealthy non-obese paradox

Objective(s): The molecular basis of “metabolically healthy obese” and “metabolically unhealthy non-obese” phenotypes is not fully understood. Our objective was to identify metabolite patterns differing in obese (metabolically healthy vs unhealthy (MHO vs MUHO)) and non-obese (metabolically healthy vs unhealthy (MHNO vs MUHNO)) individuals. Materials ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2012